Introduction to Data Science and AI using Python Training Course
This is a 5 day introduction to Data Science and Artificial Intelligence (AI).
The course is delivered with examples and exercises using Python
Course Outline
Introduction to Data Science/AI
- Knowledge acquisition through data
- Knowledge representation
- Value creation
- Data Science overview
- AI ecosystem and new approach to analytics
- Key technologies
Data Science workflow
- Crisp-dm
- Data preparation
- Model planning
- Model building
- Communication
- Deployment
Data Science technologies
- Languages used for prototyping
- Big Data technologies
- End to end solutions to common problems
- Introduction to Python language
- Integrating Python with Spark
AI in Business
- AI ecosystem
- Ethics of AI
- How to drive AI in business
Data sources
- Types of data
- SQL vs NoSQL
- Data Storage
- Data preparation
Data Analysis – Statistical approach
- Probability
- Statistics
- Statistical modeling
- Applications in business using Python
Machine learning in business
- Supervised vs unsupervised
- Forecasting problems
- Classfication problems
- Clustering problems
- Anomaly detection
- Recommendation engines
- Association pattern mining
- Solving ML problems with Python language
Deep learning
- Problems where traditional ML algorithms fails
- Solving complicated problems with Deep Learning
- Introduction to Tensorflow
Natural Language processing
Data visualization
- Visual reporting outcomes from modeling
- Common pitfalls in visualization
- Data visualization with Python
From Data to Decision – communication
- Making impact: data driven story telling
- Influence effectivnes
- Managing Data Science projects
Open Training Courses require 5+ participants.
Introduction to Data Science and AI using Python Training Course - Booking
Introduction to Data Science and AI using Python Training Course - Enquiry
Introduction to Data Science and AI using Python - Consultancy Enquiry
Consultancy Enquiry
Testimonials (4)
The course is very interesting being the main focus nowdays
mohamed taher - FAB banak Egypt
Course - Introduction to Data Science and AI (using Python)
Ahmed was very interactive and didn’t mind answering any kind of questions Well presentation and smooth flow of the course
Mohamed Ghowaiba - FAB banak Egypt
Course - Introduction to Data Science and AI (using Python)
Helpful and good listener .. interactive
Ahmed El Kholy - FAB banak Egypt
Course - Introduction to Data Science and AI (using Python)
Subject presentation knowledge timing
Aly Saleh - FAB banak Egypt
Course - Introduction to Data Science and AI (using Python)
Upcoming Courses
Related Courses
Anaconda Ecosystem for Data Scientists
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at data scientists who wish to use the Anaconda ecosystem to capture, manage, and deploy packages and data analysis workflows in a single platform.
By the end of this training, participants will be able to:
- Install and configure Anaconda components and libraries.
- Understand the core concepts, features, and benefits of Anaconda.
- Manage packages, environments, and channels using Anaconda Navigator.
- Use Conda, R, and Python packages for data science and machine learning.
- Get to know some practical use cases and techniques for managing multiple data environments.
Scaling Data Analysis with Python and Dask
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at data scientists and software engineers who wish to use Dask with the Python ecosystem to build, scale, and analyze large datasets.
By the end of this training, participants will be able to:
- Set up the environment to start building big data processing with Dask and Python.
- Explore the features, libraries, tools, and APIs available in Dask.
- Understand how Dask accelerates parallel computing in Python.
- Learn how to scale the Python ecosystem (Numpy, SciPy, and Pandas) using Dask.
- Optimize the Dask environment to maintain high performance in handling large datasets.
Data Analysis with Python, Pandas and Numpy
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at intermediate-level Python developers and data analysts who wish to enhance their skills in data analysis and manipulation using Pandas and NumPy.
By the end of this training, participants will be able to:
- Set up a development environment that includes Python, Pandas, and NumPy.
- Create a data analysis application using Pandas and NumPy.
- Perform advanced data wrangling, sorting, and filtering operations.
- Conduct aggregate operations and analyze time series data.
- Visualize data using Matplotlib and other visualization libraries.
- Debug and optimize their data analysis code.
FARM (FastAPI, React, and MongoDB) Full Stack Development
14 HoursThis instructor-led, live training in (online or onsite) is aimed at developers who wish to use the FARM (FastAPI, React, and MongoDB) stack to build dynamic, high-performance, and scalable web applications.
By the end of this training, participants will be able to:
- Set up the necessary development environment that integrates FastAPI, React, and MongoDB.
- Understand the key concepts, features, and benefits of the FARM stack.
- Learn how to build REST APIs with FastAPI.
- Learn how to design interactive applications with React.
- Develop, test, and deploy applications (front end and back end) using the FARM stack.
Developing APIs with Python and FastAPI
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to use FastAPI with Python to build, test, and deploy RESTful APIs easier and faster.
By the end of this training, participants will be able to:
- Set up the necessary development environment to develop APIs with Python and FastAPI.
- Create APIs quicker and easier using the FastAPI library.
- Learn how to create data models and schemas based on Pydantic and OpenAPI.
- Connect APIs to a database using SQLAlchemy.
- Implement security and authentication in APIs using the FastAPI tools.
- Build container images and deploy web APIs to a cloud server.
Web Application Development with Flask
14 HoursThis practical course is addressed to Python developers that want to create and maintain their first web applications. It is also addressed to people who are already familiar with other web frameworks such as Django or Web2py, and want to learn how using a microframework (i.e. a framework which glues together third-party libraries instead of providing a self-contained universal solution) changes the process.
A significant part of the course is devoted not to Flask itself (it's tiny), but to third-party libraries and tools often used in Flask projects.
Advanced Flask
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to use the advanced features of Flask to build scalable web applications on top of MongoDB.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start developing web applications with Flask.
- Get to know the advanced concepts and techniques for real-world Flask projects.
- Build a RESTful API server on top of MongoDB.
- Learn how to containerize, test, and deploy microservices with Flask, Docker, and Amazon EC2.
- Gain some insights on the advanced Flask integrations for scaling web applications.
Kaggle
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at data scientists and developers who wish to learn and build their careers in Data Science using Kaggle.
By the end of this training, participants will be able to:
- Learn about data science and machine learning.
- Explore data analytics.
- Learn about Kaggle and how it works.
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
Game Development with PyGame
7 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to use PyGame to create and build games using Python programming.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start creating game applications with PyGame and Python.
- Learn how to create interactive PyGame applications integrated with animations and multimedia features.
- Run and test game programs with PyGame test suite and convert them into executable files.
GPU Data Science with NVIDIA RAPIDS
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at data scientists and developers who wish to use RAPIDS to build GPU-accelerated data pipelines, workflows, and visualizations, applying machine learning algorithms, such as XGBoost, cuML, etc.
By the end of this training, participants will be able to:
- Set up the necessary development environment to build data models with NVIDIA RAPIDS.
- Understand the features, components, and advantages of RAPIDS.
- Leverage GPUs to accelerate end-to-end data and analytics pipelines.
- Implement GPU-accelerated data preparation and ETL with cuDF and Apache Arrow.
- Learn how to perform machine learning tasks with XGBoost and cuML algorithms.
- Build data visualizations and execute graph analysis with cuXfilter and cuGraph.
Build REST APIs with Python and Flask
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at backend developers who wish to build REST APIs with Python and Flask.
By the end of this training, participants will be able to:
- Implement a REST API to allow a Flask web application to read and write to a database in the backend.
- Develop advanced authentication features like refresh tokens.
- Build a reusable backend for future Python projects.
- Simplify storage of data with SQLAlchemy.
- Deploy REST APIs onto a cloud based server.
Scientific Computing with Python SciPy
7 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to use SciPy to create advanced scientific computing functions with Python.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start creating scientific computing functions.
- Get the full benefit of SciPy features by performing practical examples of complex operations.
- Implement and optimize mathematical algorithms and functions to solve scientific problems.
- Design data structures and interpolation methods for visualization, processing, and analysis.