AI for Healthcare using Google Colab Training Course
AI for Healthcare using Google Colab is an innovative approach to applying AI techniques in the healthcare sector for predictive modeling and medical image analysis.
This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and healthcare professionals who wish to leverage AI for advanced healthcare applications using Google Colab.
By the end of this training, participants will be able to:
- Implement AI models for healthcare using Google Colab.
- Use AI for predictive modeling in healthcare data.
- Analyze medical images with AI-driven techniques.
- Explore ethical considerations in AI-based healthcare solutions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to AI in Healthcare
- Overview of AI applications in healthcare
- Setting up Google Colab for healthcare AI projects
- Understanding key healthcare datasets
AI for Predictive Modeling in Healthcare
- Exploring healthcare predictive models
- Building predictive models using machine learning
- Evaluating healthcare data models
Medical Image Analysis with AI
- Introduction to AI for medical imaging
- Implementing deep learning models for image analysis
- Using AI to detect patterns in medical images
Data Preprocessing and Feature Engineering
- Cleaning and preparing healthcare data
- Feature engineering techniques for healthcare datasets
- Dealing with missing and unstructured data
Ethical Considerations in AI for Healthcare
- Understanding the ethical impact of AI in healthcare
- Ensuring privacy and data protection
- Fairness and transparency in AI models
AI-Powered Healthcare Case Studies
- Real-world AI applications in healthcare
- Case studies on AI-driven predictive analytics
- Medical image analysis with AI in clinical settings
Advanced AI Techniques in Healthcare
- Implementing advanced AI models
- Exploring natural language processing in healthcare
- AI-driven decision support systems in healthcare
Summary and Next Steps
Requirements
- Basic knowledge of AI and machine learning concepts
- Familiarity with Python programming
- Understanding of healthcare industry fundamentals
Audience
- Data scientists working in healthcare
- Healthcare professionals interested in AI
- Researchers exploring AI-driven healthcare solutions
Open Training Courses require 5+ participants.
AI for Healthcare using Google Colab Training Course - Booking
AI for Healthcare using Google Colab Training Course - Enquiry
AI for Healthcare using Google Colab - Consultancy Enquiry
Consultancy Enquiry
Testimonials (4)
very friendly and helpful
Aktar Hossain - Unit4
Course - Building Microservices with Microsoft Azure Service Fabric (ASF)
The manual serverless setup. Also, I had no Idea sls web console exits, which is nice.
Rafal Kucharski - The Software House sp. z o.o.
Course - Serverless Framework for Developers
All good, nothing to improve
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Course - AWS Lambda for Developers
IOT applications
Palaniswamy Suresh Kumar - Makers' Academy
Course - Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
Upcoming Courses
Related Courses
Advanced Amazon Web Services (AWS) CloudFormation
7 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at cloud engineers and developers who wish to use CloudFormation to manage infrastructure resources within the AWS ecosystem.
By the end of this training, participants will be able to:
- Implement CloudFormation templates to automate infrastructure management.
- Integrate existing AWS resources into CloudFormation.
- Use StackSets to manage stacks across multiple accounts and regions.
Amazon DynamoDB for Developers
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to integrate a DynamoDB NoSQL database into a web application hosted on AWS.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start integrating data into DynamoDB.
- Integrate DynamoDB into web applications and mobile applications.
- Move data in AWS with AWS services.
- Implement operations with AWS DAX.
AWS IoT Core
14 HoursThis instructor-led, live training in Brazil (onsite or remote) is aimed at engineers who wish to deploy and manage IoT devices on AWS.
By the end of this training, participants will be able to build an IoT platform that includes the deployment and management of a backend, gateway, and devices on top of AWS.
Amazon Web Services (AWS) IoT Greengrass
21 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to install, configure, and manage AWS IoT Greengrass capabilities to create applications for various devices.
By the end of this training, participants will be able to use AWS IoT Greengrass to build, deploy, manage, secure, and monitor applications on intelligent devices.
AWS Lambda for Developers
14 HoursThis instructor-led, live training in Brazil (onsite or remote) is aimed at developers who wish to use AWS Lambda to build and deploy services and applications to the cloud, without needing to worry about provisioning the execution environment (servers, VMs and containers, availability, scalability, storage, etc.).
By the end of this training, participants will be able to:
- Configure AWS Lambda to execute a function.
- Understand FaaS (Functions as a Service) and the advantages of serverless development.
- Build, upload and execute AWS Lambda functions.
- Integrate Lambda functions with different event sources.
- Package, deploy, monitor and troubleshoot Lambda based applications.
Building Microservices with Microsoft Azure Service Fabric (ASF)
21 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers who wish to learn how to build microservices on Microsoft Azure Service Fabric (ASF).
By the end of this training, participants will be able to:
- Use ASF as a platform for building and managing microservices.
- Understand key microservices programming concepts and models.
- Create a cluster in Azure.
- Deploy microservices on premises or in the cloud.
- Debug and troubleshoot a live microservice application.
AWS CloudFormation
7 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at engineers who wish to use AWS CloudFormation to automate the process of managing AWS cloud infrastructure.
By the end of this training, participants will be able to:
- Enable AWS services to get started managing infrastructure.
- Understand and apply the principle of "infrastructure as code".
- Improve quality and lower the costs of deploying infrastructure.
- Write AWS CloudFormation Templates using YAML.
Mastering DevOps with AWS Cloud9
21 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at advanced-level professionals who wish to deepen their understanding of DevOps practices and streamline development processes using AWS Cloud9.
By the end of this training, participants will be able to:
- Set up and configure AWS Cloud9 for DevOps workflows.
- Implement continuous integration and continuous delivery (CI/CD) pipelines.
- Automate testing, monitoring, and deployment processes using AWS Cloud9.
- Integrate AWS services such as Lambda, EC2, and S3 into DevOps workflows.
- Utilize source control systems like GitHub or GitLab within AWS Cloud9.
Fn Project
7 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at programmers and developers who wish to use Fn in creating serverless applications and services.
By the end of this training, participants will be able to:
- Set up Fn to create directories and functions.
- Create applications using different programming languages.
- Monitor functions to resolve issues at the development and deployment stages.
Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
4 HoursSummery:
- Basics of IoT architecture and functions
- “Things”, “Sensors”, Internet and the mapping between business functions of IoT
- Essential of all IoT software components- hardware, firmware, middleware, cloud and mobile app
- IoT functions- Fleet manager, Data visualization, SaaS based FM and DV, alert/alarm, sensor onboarding, “thing” onboarding, geo-fencing
- Basics of IoT device communication with cloud with MQTT.
- Connecting IoT devices to AWS with MQTT (AWS IoT Core).
- Connecting AWS IoT core with AWS Lambda function for computation and data storage.
- Connecting Raspberry PI with AWS IoT core and simple data communication.
- Alerts and events
- Sensor calibration
Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「8 Hours Remote」
8 HoursSummary:
- Basics of IoT architecture and functions
- “Things”, “Sensors”, Internet and the mapping between business functions of IoT
- Essential of all IoT software components- hardware, firmware, middleware, cloud and mobile app
- IoT functions- Fleet manager, Data visualization, SaaS based FM and DV, alert/alarm, sensor onboarding, “thing” onboarding, geo-fencing
- Basics of IoT device communication with cloud with MQTT.
- Connecting IoT devices to AWS with MQTT (AWS IoT Core).
- Connecting AWS IoT core with AWS Lambda function for computation and data storage using DynamoDB.
- Connecting Raspberry PI with AWS IoT core and simple data communication.
- Hands on with Raspberry PI and AWS IoT Core to build a smart device.
- Sensor data visualization and communication with web interface.
OpenFaas for Developers
14 HoursThis instructor-led, live training in Brazil (onsite or remote) is aimed at developers who wish to use OpenFaas to create, build, test, debug and deploy event-driven functions without needing to worry about managing the underlying server infrastructure.
By the end of this training, participants will be able to:
- Install and configure OpenFaas.
- Package any binary or code as a serverless function without repetitive boiler-plate coding.
- Decouple from AWS Lambda to avoid lock-in.
- Deploy event-driven functions to an on-premise server or to the cloud.
Parallel Programming with OpenMP
14 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at software engineers who wish to develop parallel applications using OpenMP.
By the end of this training, participants will be able to:
- Understand and use parallel programming with Fortran in OpenMP.
- Calculate fractals in parallel to render multiple pixels and characters.
- Implement vector programming with SIMD extensions for HPC systems.
- Add parallel blocks for specifying shared memory parallelism.
Serverless Framework for Developers
14 HoursThis instructor-led, live training in Brazil (onsite or remote) is aimed at developers who wish to use Serverless Framework on AWS and other cloud platforms to create and deploy microservice applications.
By the end of this training, participants will be able to:
- Set up Serverless Framework to work with compute services such as AWS Lambda.
- Reduce the complexity and cost of deploying microservices on different cloud platforms.
- Emit and capture events and execute functions automatically.
Serverless on Kubernetes Fundamentals
21 HoursThis instructor-led, live training in Brazil (online or onsite) is aimed at developers and DevOps engineers who wish to utilize a serverless approach for building enterprise applications in Kubernetes.
By the end of this training, participants will be able to:
- Setup and configure the Kubernetes system to start developing with a serverless architecture.
- Understand the concepts and principles foundational to serverless environments.
- Operate toolchains necessary to serverless development and integrate it with Kubernetes components.
- Practice their skill in Python programming language and apply it to implement serverless systems.
- Secure enterprise applications that are deployed through a serverless framework on Kubernetes.
- Utilize modern cloud computing methods in optimizing DevOps task processing workflows.